
Michele Mossa Antonio Felice Petrillo

Idraulica

Seconda edizione

Indice generale

	Pret	azione	XIII
	I conte	enuti e l'impostazione	XIII
	Gli str	umenti per l'apprendimento	XV
		è organizzato questo libro	XVI
		' di storia della meccanica dei fluidi	XVIII
	Gli au	ori	XIX
1	Intro	oduzione all'idraulica	1
	1.1	Generalità sui fluidi	1
	1.2	Concetto di fluido come continuo	2
	1.3	Dimensioni, unità di misura e grandezze fondamentali e derivate	4
	1.4	Tensioni in un fluido	6
		1.4.1 Teorema del tetraedro di Cauchy	7
		1.4.2 Considerazioni sul teorema del tetraedro di Cauchy	9
		1.4.3 Equilibrio alla rotazione del tetraedro di Cauchy	10
		1.4.4 Corollario del teorema del tetraedro di Cauchy per sistema isotropo	11
		▶ Principio di Pascal	11
	1.5	Comprimibilità, densità ed espansione termica	12
		▶ Espressione della pressione in funzione della profondità	14
		► Esempio► Una curiosità	16 17
	1.6	Tensione superficiale	18
		➤ Cosa succede alle particelle di fluido all'interfaccia	18
		Una considerazioneUna precisazione	21 25
		Formule semplificate per la risalita capillare	28
		▶ Esempio	29
	1.7	Viscosità	29
		Principio dell'omogeneità dimensionale e dimensioni della viscosità	32
		► Esempio ► Osservazione	33 35
	1.8	Altre proprietà dei fluidi	38
	A pro	posito di tensione superficiale	40
		izi risolti	41
	Eserc	izi proposti	41
	Biblio		42
2	Stat	ica dei fluidi	43
	2.1	Equazione indefinita della statica dei fluidi	43
		▶ Una curiosità	44
		▶ Orientamenti dei vettori delle pressioni nei fluidi	44
		 Che relazione sussiste tra le pressioni p e p"? Che valore può avere f? 	45 46
		▶ I piani isobarici e i piani equipotenziali sono anche isocori	48
	2.2	Equazione globale della statica dei fluidi	48
		 ▶ Fisicamente che cosa rappresenta l'equazione globale dell'equilibrio statico? ▶ Che cosa rappresentano i termini G e II? 	50 50
	2.3	Legge di Stevino e considerazioni sulle pressioni	51

VI Indice generale © 978-88-08-99977-1

		 Chi dà la pressione in A e B? Perché si preferisce usare la pressione relativa piuttosto che la pressione assoluta? 	53 54
	2.4	Sulla distribuzione delle pressioni	55
		 Che cosa significa fisicamente avere pressioni relative negative e qual è il valore limite delle pressioni relative negative? Che succede alla pressione nei punti E e D? Note conclusive Come si può descrivere la formula p = γ·h? 	57 57 58 58
	2.5	Espressione della pressione	58
	2.6	Spinte su superfici piane	60
		▶ Il centro di spinta C ha profondità maggiore o uguale a quella del baricentro	
		della piastra piana G, ovvero x _C ≥ x ₀ ► Proprietà del momento centrifugo ► Esempio di calcolo del centro di spinta ► Caso particolare	64 64 64 67
	2.7	Spinte su superfici curve	67
		 È sempre possibile rappresentare le tre spinte S_x S_y e S_z con un unico vettore S e un unico centro di spinta? I vettori Π₁, G e, dunque, S sono facilmente calcolabili? 	68 71
	2.8	Galleggiamento	72
		▶ Osservazione	73
		▶ Esempio	75
	2.9	Paradosso idrostatico Botte di Pascal	77 78
	0.40		
	2.10	Misurazione della pressione • Osservazione sui liquidi manometrici a elevato peso specifico	78 80
		Osservazione su liquidi manometrici e relative disposizioni dei manometri differenziali a U	83
	2.11	Fluidi di piccolo peso specifico	84
		Formula di Mariotte	87
	2.13	Equilibrio relativo	88
		▶ La forza centrifuga ammette funzione potenziale?	92
	A pro	posito di elevate pressioni	97
		izi risolti	97
	Eserc	izi proposti	100
	Biblio	grafia	104
3	Cine	ematica dei fluidi	105
	3.1	Regimi di moto	105
		▶ Quando iniziarono i primi studi sul flusso turbolento nei tubi?	107
		▶ Osservazione	108
	3.2	Velocità e accelerazione	109
		▶ Esempi di misure lagrangiane ed euleriane	110
	3.3	Visualizzazione di un campo di moto	111
	3.4	Tubi di flusso	113
	3.5	Tipi di moto	115
	3.6	Confronto tra regimi e tipi di moto	116
		Come si può ricavare la componente di velocità di trasporto nel caso di moto turbolento?	118
	3.7	Ancora sui tipi di moto e deformazione degli elementi fluidi	119
	3.8	Vorticità, rotazionalità e flussi circolari	122
	3.9	Equazione indefinita di continuità	123
		 Significato físico dell'equazione di continuità. Lavoisier ed Einstein Principio di conservazione della massa e teorema di trasporto di Reynolds 	123 124
		Come si spiega fisicamente la precedente affermazione?	126
		► Esempio	128
	0.45	► Esempio	128
	3.10	Equazione globale di continuità per volumi di controllo fissi	100
		nello spazio Volumi di controllo in movimento	129 131
		► Esempio	132

Indice generale VII

	3.11	Equazione di continuità applicata alle correnti	133
	A pro	posito di vortici	135
	Eserc	izi risolti	136
	Eserc	izi proposti	137
	Biblio	grafia	138
4	Din	amica dei fluidi	400
Ť			139
	4.1	Equazione indefinita del moto	139
	4.2	Legge di viscosità di Stokes Pressione termodinamica e sforzi normali	142 145
	4.0	, , , , , , , , , , , , , , , , , , , ,	
	4.3	Equazione di Eulero e di Navier Stokes	146
	4.4 4.5	Tipiche condizioni al contorno dei flussi	149
	4.5	Equazione globale dell'equilibrio dinamico Equazione globale del momento della quantità di moto	149 152
	4.6	Coefficiente di ragguaglio della quantità di moto	
	4.7	Teorema di Bernoulli	153 154
	4.8	Distribuzione della pressione e correnti gradualmente variate	154
	4.9	Significato geometrico ed energetico del teorema di Bernoulli	157
	4.10	Teorema di Bernoulli per flussi irrotazionali	159
		► Conclusioni	160
	4.11	Processi di efflusso	160
		▶ Come si può variare la portata?	164
		▶ Distribuzione della pressione nella sezione contratta di un getto effluente da parete verticale	166
	4.12	Altre applicazioni del teorema di Bernoulli ▶ Modello del tubo di Pitot	169 170
	4.13	Estensione al moto vario e ai fluidi comprimibili del teorema di Bernoulli	171
	4.14		171
		di una corrente	171
		▶ Quanto può valere il coefficiente della potenza cinetica e in che relazione	
		si pone rispetto al coefficiente di ragguaglio del flusso della quantità di moto di Boussinesq?	173
	4.15	Alcune applicazioni delle estensioni del teorema di Bernoulli	
		ai moti vari e alle correnti	174
		Esigenza della taratura e norme di unificazione	178
		Estensione ai fluidi reali	181
		Scambio di energia tra una corrente e una macchina	184
		Applicazioni	186
		posito di spinte dinamiche	196
		izi risolti	196
	Biblio	izi proposti grafia	210 210
	Diblio	grund	210
5	Ana	lisi dimensionale e similitudine	211
	5.1	Principio dell'omogeneità dimensionale	211
	5.2	Alcune classiche equazioni dell'ingegneria	214
	5.3	Teorema II	214
		Osservazioni e commenti. Vantaggi delle formulazioni adimensionali	217
	5.4	Tipici numeri indici nell'idraulica • Una curiosità	219
			220
	5.5	Analisi dimensionale nella modellistica fisica	221
	5.6	Similitudine e autosimilitudine	228
	A pro	posito di modelli e onde	230

Indice generale © 978-88-08-99977-1

VIII

	Eserc	izi risolti	231
	Eserc	izi proposti	231
	Biblio	grafia	231
6	Cor	renti in pressione	233
	6.1	Condizioni di ingresso in condotta	233
	6.2	Azione di trascinamento di una corrente	235
		▶ Raggio idraulico, diametro idraulico e numero di Reynolds	237
		▶ Osservazione	238
	6.3	Indice di resistenza	238
	6.4	Analisi del moto laminare in condotti cilindrici con sezioni	
		di vario tipo	238
		6.4.1 Moto in condotto a sezione circolare	239
		6.4.2 Moto fra facce piane parallele Fattore di forma	241 242
		6.4.3 Moto in condotti a sezione anulare	243
		6.4.4 Moto in condotto a sezione ellittica	243
		6.4.5 Moto in condotto a sezione triangolare equilatera	245
		6.4.6 Moto in condotto a sezione rettangolare	246
		6.4.7 Metodo delle differenze finite	248
		▶ Diagrammi quantitativi di velocità e resistenze al moto in condotti di sezione	
		retta anulare in condizioni di moto laminare Applicazione del metodo delle differenze finite per la soluzione dell'equazione	250
		di Poisson	251
	6.5	Indice di resistenza nel moto laminare	252
	6.6	Cenni sulla turbolenza	252
	6.7	Grandezze cinematiche caratteristiche di un moto turbolento	253
	6.8	Equazioni meccaniche del moto medio	255
		▶ Ma come si spiegano fisicamente le tensioni di Reynolds?	256
		▶ Bilancio tra incognite ed equazioni del moto medio turbolento	257
	6.9	Moto medio turbolento in un condotto a sezione circolare	257
	6.10	Diagrammi di velocità nel moto turbolento medio:	
		possibili vie di studio	261
		6.10.1 Teoria del trasporto della quantità di moto	261
		6.10.2 Teoria del trasporto della vorticità ▶ Pensiero di Enrico Marchi sui vari indirizzi di studio sulla turbolenza	262 262
	0.44		
	6.11	Viscosità turbolenta e lunghezza di mescolamento	262
	6.12	Concetto e calcolo della scala della turbolenza	264
	6.13	Natura composita dello strato limite turbolento	265
	6.14	Distribuzioni di velocità medie in fluidi incomprimibili	000
		su superfici lisce 6.14.1 Substrato viscoso	269 269
		6.14.2 Zona completamente turbolenta della regione interna	269
		6.14.3 Zona di transizione (strato buffer) della regione interna	270
		6.14.4 Regione esterna	271
		6.14.5 Espressione del profilo di velocità secondo Coles	271
	6.15	Distribuzioni di velocità medie in flussi turbolenti incomprimibili	
		su superfici scabre con gradiente nullo di pressione	273
		▶ Scabrezza	273
	6.16	Distribuzioni di velocità medie in flussi turbolenti incomprimibili	
		in condotti cilindrici circolari lisci	276
	6.17	Distribuzioni di velocità medie in flussi turbolenti incomprimibili	
		in condotti cilindrici circolari scabri	278
		6.17.1 Moto assolutamente turbolento	278
		6.17.2 Moto turbolento di transizione	278
	6.18	Contributo di Marchi alla determinazione delle leggi	
		di distribuzione della velocità nello strato esterno	
		nei condotti chiusi e aperti	279

© 978-88-08-99977-1 Indice generale

6.19 6.20	Leggi di resistenza nei condotti in presenza di moto turbolento: caso dei condotti circolari Formule pratiche	281 285
6.21	Reimpostazione teorica delle leggi di velocità per condotti	200
6.22	di sezione non circolare Reimpostazione teorica delle leggi di resistenza nei condotti	286
	di sezione non circolare Generalizzazione al caso del moto laminare	288 290
6.23	Caso di condotto a sezione trasversale anulare concentrica	290
6.24	Perdite di carico localizzate ▶ Peso delle perdite di carico localizzate nelle lunghe condotte	296 296
6.25	Problemi delle lunghe condotte	302
	 Un approfondimento Esempio di un progetto di una condotta di sezione circolare in regime 	303
	di moto laminare Verifica di una condotta in moto laminare	304 306
	 Esempio di problema di progetto con applicazione della legge di Darcy e del coefficiente di scabrezza secondo Bazin 	306
	6.25.1 Condotte in serie e in parallelo	309
	► Continuazione dell'esercizio precedente, utilizzando i diametri commerciali	315
6.26	Condotta con diametro costante con erogazione uniforme	0.10
6 07	lungo il percorso	316
6.27 6.28	Condotta con impianto di sollevamento Problemi di progetto delle reti aperte	319
0.20	Criterio di economia del Marzolo	322 324
	► Esercizio	325
6.29	Possibili tracciati altimetrici delle condotte	329
	 Osservazione Come evidenziare la linea piezometrica relativa e la linea piezometrica assoluta Linea dei carichi idrostatici relativi 	329 329 330
	6.29.1 Caso in cui un tratto della condotta sia al di sopra della linea	
	piezometrica relativa ▶ Sfiati e scarichi	331 332
	6.29.2 Caso in cui un tratto della condotta sia al di sopra della linea piezometrica relativa e in corrispondenza del punto di massimo viene installato uno sfiato libero	333
	6.29.3 Caso in cui un tratto della condotta sia al di sopra della linea piezometrica relativa e della linea dei carichi idrostatici relativi	334
	6.29.4 Caso in cui un tratto della condotta sia al di sopra della linea piezometrica relativa e della linea dei carichi idrostatici relativi e si volesse installare uno sfiato in corrispondenza del punto	
	di massimo	336
	6.29.5 Caso in cui un tratto della condotta superi di un valore maggiore di p_{atm}/γ la retta congiungente le quote piezometriche dei nodi	
	di monte e di valle	336
	6.29.6 Caso in cui un tratto della condotta superi di un valore maggiore di ρ_{atm}/γ la retta congiungente le quote piezometriche dei nodi di monte e di valle e in corrispondenza del massimo	
	di quello stesso tratto della condotta ci sia uno sfiato	338
	6.29.7 Caso in cui un tratto della condotta superi di un valore maggiore di ρ_{atm}/γ la retta congiungente le quote piezometriche dei nodi	
	di monte e di valle e la linea dei carichi idrostatici relativi	338
	6.29.8 Caso in cui un tratto della condotta superi di un valore maggiore di p_{atm}/γ la retta congiungente le quote piezometriche dei nodi di monte e di valle e in corrispondenza del massimo	
	di quello stesso tratto della condotta ci fosse uno sfiato	330
	che supera la linea dei carichi idrostatici relativi 6.29.9 Caso in cui un tratto della condotta superi la linea	339
	dei carichi idrostatici assoluti	339
6.30	Reti chiuse	340
	6.30.1 Problemi di progetto	342
	6.30.2 Problemi di verifica	342

Indice generale © 978-88-08-99977-1

		6.30.3 Modalità di progettazione di una rete chiusa • Esempio. Problema di verifica col metodo di Cross	342 346
	A pro	posito di la prima volta che l'acqua arrivò in città	348
		izi risolti	348
		izi proposti	358
	Biblio	grafia	358
7	Mot	to vario delle correnti in pressione	361
	7.1	Esempi di moto vario	362
		7.1.1 Caso in cui non è presente una superficie libera ed è lecito	00/
		considerare il liquido incomprimibile e la condotta indeformabile 7.1.2 Caso in cui non è presente una superficie libera, è necessario	364
		considerare le proprietà elastiche del liquido e del condotto	
		e si possono trascurare le resistenze al moto	364
		7.1.3 Caso in cui è presente una superficie libera, è lecito trascurare	
		le proprietà elastiche del liquido e della condotta ed è necessario considerare le resistenze al moto	364
	7.2	Moto vario di un liquido elastico in condotto deformabile	365
	7.3	Manovre istantanee all'otturatore	367
	7.0	▶ Un cenno sull'eventualità che la sottopressione possa dar luogo a fenomeni	001
		di cavitazione	372
	7.4	Celerità della perturbazione	373
		7.4.1 Condotta indeformabile	373
		7.4.2 Condotta deformabile	374
	7.5	Equazioni del moto vario nelle condotte in pressione	376
	7.0	Formula di Michaud	379
	7.6	Estensione del moto vario al caso di discontinuità nelle condotte	004
		► Esempio	381 383
	7.7	Oscillazioni di massa	385
		<i>posito di</i> tecniche di protezione dal colpo di ariete izi risolti	388
		izi proposti	390
		grafia	390
8	Mot	ti a potenziale	391
	8.1	•	
	0.1	Moti a potenziale Osservazione	391 392
		▶ Osservazione	392
	8.2	Moti bidimensionali e la funzione di corrente	392
		➤ Conclusione ➤ Osservazione	393
	0.0		395
	8.3	Risoluzione dei moti a potenziale	395
		posito di apparato di Hele-Shaw	407
		izi risolti izi proposti	407 409
		grafia	409
	N		
9		to attorno ai corpi	411
	9.1	Teoria dello strato limite	411
	9.2	Flusso su una lastra piana	413
	9.3	Parametri dello strato limite	417
	9.4	Stima dell'integrale di von Kármán	418
	9.5	Equazioni dello strato limite	419
	9.6	Strato limite con gradiente di pressione	424
	9.7 9.8	Forze agenti sui corpi investiti da flussi Forza di resistenza	428
	5.0	i diza di l'alignata	430

Indice generale XI

	9.9	Forza di portanza	438
	A pro	posito di flussi esterni ai corpi	444
		zi risolti	445
	Eserc	zi proposti	449
	Biblio	grafia	449
10	Mot	i di filtrazione	451
		egge di Darcy	453
		Determinazione della permeabilità in laboratorio	454
		Regimi dei moti di filtrazione	456
		Rete di filtrazione	456
	10111	Esempi di costruzione di una rete di flusso. Caso di un flusso attraverso	400
		una diga in terra	458
		Esempi di costruzione di una rete di flusso. Infiltrazione sotto una palancola	459
	10.5	Casi di emungimento da falde	459
		Osservazione	463
	A pro	posito di pozzo di San Patrizio	464
		zi risolti 	465
	Biblio	zi proposti	467 467
	DIDIIO	grana	407
11	Cor	renti a superficie libera	469
	11.1	Classificazione dei moti a pelo libero	469
	11.2	Classificazione dei moti nei canali	472
		▶ Alcune prime riflessioni sul moto vario nei canali	472
	11.3	Leggi di resistenza per i canali e caso del moto uniforme	474
	11.4	Verifica e progetto. Scala di deflusso	477
		▶ Valutazione dell'errore per il mancato uso del coefficiente di forma nella formula	477
		di Gauckler-Strickler ▶ Esercizio	477 480
	11.5	Energia specifica valutata rispetto al fondo della sezione	
		del canale	480
	11.6	Alvei a debole e forte pendenza	484
	11.7	Carattere cinematico di una corrente: velocità delle onde	
		di superficie	485
	11.8	Moto gradualmente variato	490
		Caso di una sezione rettangolare larga	491
	11.9	Tracciamento dei profili di corrente gradualmente variata	492
		▶ Regole per il tracciamento qualitativo dei profili di corrente gradualmente variata	499
	11.10	Il risalto idraulico	500
		 Concetto e calcolo della spinta totale Riduzione della pendenza del fondo di un alveo da i > i_c a i < i_c 	503 505
	44.44		000
	11.11	Tracciamento del profilo di moto gradualmente variato per integrazione numerica	509
	11.12	Esempi applicativi	509
		11.12.1 Passaggio attraverso una paratoia piana	509
		11.12.2 Cambiamento della scabrezza	512
		11.12.3 Passaggio di una corrente su una soglia di fondo	513
		11.12.4 Passaggio tra le pile di un ponte	516
		11.12.5 Profili con gradini discendenti	518
		11.12.6 Profili con gradini ascendenti	521
	11.13	Cenni sul trasporto dei sedimenti	523
	A pro	posito di alluvioni	527

© 978-88-08-99977-1

Indice generale © 978-88-08-99977-1

XII

Eserc	cizi risolti cizi proposti	528 533
Biblic	ografia	533
Арре	NDICE A Proprietà fisiche dei fluidi	535
APPE	NDICE B Alcune nozioni di algebra e geometria	
	analitica e delle masse	539
B.1	Elementi di calcolo tensoriale	539
	Somma tra vettori	541
	Prodotto di un vettore per uno scalare	541
	Prodotto scalare	541
	Prodotto vettoriale	541
	Operatori vettoriali	541
B.2	Passaggio tra sistemi di coordinate	542
	Passaggio da un sistema di coordinate cartesiano a un altro sistema di coordinate cartesiano ruotato rispetto al primo	542
	Coordinate cilindriche	544
	Coordinate polari	545
	Coordinate sferiche	546
B.3	Relazioni notevoli relative all'operatore ∇	546
	Campo vettoriale	546
	Gradiente ∇f	547
	Divergenza ∇·a	547
	Rotore ∇ × a	547
	Laplaciano $\nabla^2 \mathbf{f}$	547
	Laplaciano di un vettore $ abla^2$ a Altre relazioni notevoli	548
D 4		548
B.4	I principali teoremi del calcolo integro-differenziale	548
	Teorema di Stokes o della circuitazione Teorema di Gauss-Green o della divergenza	548 549
	Altri teoremi	549
B.5	Elementi di geometria delle masse	550
D .5	Teorema di Huygens-Steiner	551
B.6	Variazione dei momenti per rotazioni degli assi di riferimento	552
APPE	NDICE C Teorema del trasporto di Reynolds	553
C.1	Sistema chiuso e volume di controllo	553
C.2	Il teorema del trasporto di Reynolds	554
C.3	Volume di controllo fisso e flusso unidimensionale	555
	Caso di flusso unidimensionale	557
C.4	Volume di controllo fisso	557
C.5	Volume di controllo in moto a velocità costante	558
C.6	Volume di controllo di forma costante in moto a velocità	
	variabile	559
C.7	Volume di controllo deformabile e in moto	559
	Caso di volume di controllo deformabile	560
	Legame tra il teorema del trasporto di Reynolds e la regola di derivazione	F00
	sostanziale	560
APPE	NDICE D Equazione globale del momento	
	della quantità di moto	561
D.1 N	D.1 Momento intorno a un polo 562	

Indice analitico 565

Prefazione

I contenuti e l'impostazione

La meccanica dei fluidi è una branca della fisica che studia i fluidi sia in movimento (fluidodinamica) che in quiete (statica dei fluidi). Lo stato di quiete dei fluidi può essere considerato un caso particolare della dinamica dei fluidi, quando velocità e accelerazioni sono costantemente nulle. La meccanica dei fluidi, generalmente, è nota come idraulica quando è riferita allo studio di fluidi debolmente comprimibili, come i liquidi e gli aeriformi a bassa velocità; altrimenti è nota come gasdinamica. Da quanto scritto e considerato il titolo di questo libro, si deduce che esso è principalmente orientato allo studio dei fluidi debolmente comprimibili, confinati, esterni a corpi o in presenza di una superficie libera.

Il libro è di supporto per gli studenti di ingegneria che devono affrontare lo studio dell'idraulica, disciplina notoriamente impegnativa, formativa e caratterizzante per molti corsi di laurea, come l'ingegneria civile e ambientale, ma anche l'ingegneria meccanica e altri ancora, quando l'organizzazione della materia è particolarmente indirizzata allo studio dei fluidi poco comprimibili. L'obiettivo principale dell'opera è di fornire agli studenti di ingegneria le nozioni basilari dell'idraulica, non solo da un punto di vista teorico, ma anche applicativo, come è indubbiamente richiesto a un futuro ingegnere. Per quanto particolarmente indirizzato agli studenti universitari, il testo è una sicura guida e promemoria per i professionisti: ingegneri, geologi e tutti coloro che, nell'ambito della propria professione, riscontrassero l'esigenza di conoscere le leggi e le applicazioni proprie dell'idraulica. Per la corretta lettura del testo il lettore deve possedere le nozioni di analisi matematica, algebra, geometria analitica, geometria delle masse e fisica, ossia di quei corsi che notoriamente anticipano lo studio dell'idraulica. Un'apposita appendice del testo ripropone in sintesi alcuni concetti basilari.

Il testo affronta argomenti che sono stati suddivisi in undici capitoli. Nel *Capitolo 1* vengono illustrati i **principi di base dell'idraulica**. Le **leggi teoriche e i principi fondamentali** della statica, della cinematica e della dinamica dei fluidi vengono affrontati nel *Capitolo 2* per la **statica dei fluidi**, nel *Capitolo 3* per la **cinematica dei fluidi** e nel *Capitolo 4* per la **dinamica dei fluidi**.

Il *Capitolo 5* ha lo scopo di fornire i fondamenti della **modellistica fisica idraulica**. Vengono trattati i principi dell'analisi dimensionale e delle similitudini geometrica, cinematica e dinamica, con l'introduzione dei numeri indice.

I capitoli successivi hanno lo scopo di fornire le nozioni tipiche del moto permanente, laminare e turbolento, e il moto vario nelle condotte in pressione. In particolare, il *Capitolo 6* e il *Capitolo 7* trattano il **moto permanente** e il **moto vario delle correnti in pressione**, rispettivamente.

Prefazione © 978-88-08-99977-1

XIV

Ai fini dello studio dei flussi con un campo di velocità irrotazionale, il *Capitolo 8* tratta i **moti a potenziale**. Il *Capitolo 9* fornisce dei cenni sui **flussi di fluidi incomprimibili** attorno a corpi.

I **moti di filtrazione**, caratterizzati dal movimento lento di un liquido attraverso un sistema permeabile, vengono presentati nel *Capitolo 10*.

Infine, il *Capitolo 11* del testo presenta le nozioni del moto uniforme, del moto permanente e della propagazione delle piccole perturbazioni nei **canali a pelo libero**.

Il testo dispone anche di appendici. In particolare, le *Appendici A* e *B* sono dedicate, rispettivamente, alle **proprietà dei fluidi** e alle nozioni di base dell'**algebra** e della **geometria analitica e delle masse**, la cui conoscenza è fondamentale per la corretta comprensione dei contenuti del testo. Interessanti approfondimenti sono contenuti nelle *Appendici C* e *D* dedicate al **teorema del trasporto di Reynolds** e all'**equazione globale del momento della quantità di moto**, rispettivamente.

Ciascun capitolo e appendice è arricchito da **molte figure** (circa 600 in totale), che vengono riproposte durante la dimostrazione dei teoremi, seguendo lo sviluppo degli stessi, e durante lo svolgimento degli esercizi proposti. Si ritiene che l'elevato numero di immagini, diagrammi e foto possa favorire l'apprendimento di chi studia.

Questo manuale offre una modalità di presentazione degli argomenti certamente al passo con le più recenti pubblicazioni e i più recenti mezzi utilizzati nell'ambito della didattica universitaria, sviluppando gli argomenti in modo comprensivo, in molti casi con una procedura passo-passo e, come detto, sempre con l'ausilio di numerose figure ed esempi applicativi.

Tuttavia, gli autori hanno voluto salvaguardare alcuni aspetti propri dell'approccio classico dell'idraulica italiana, la quale è una disciplina ben consolidata nel nostro Paese e un fiore all'occhiello nell'ambito dei corsi di ingegneria a livello internazionale. Pertanto, accanto a nuovi strumenti per l'apprendimento e a un modo nuovo di presentazione degli argomenti, auspicabilmente più efficace, nel testo si utilizzano simboli, definizioni, concetti e formule della classica idraulica italiana, non sempre presenti nei libri di origine anglosassone. Per esempio, vengono proposti gli approcci alla progettazione dei condotti sia con le formule empiriche, ancora di ampio utilizzo nell'ingegneria idraulica italiana per il moto assolutamente turbolento, sia con la più recente formula di Colebrook-White; le formule di economia per le reti aperte e per la progettazione dei condotti con un impianto di sollevamento vengono proposte anche per i casi particolari, anch'essi classici nell'idraulica italiana, della formulazione di Francesco Marzolo e di Bresse, rispettivamente; si presentano diverse applicazioni nell'ambito dei tracciati altimetrici dei condotti in pressione e dei profili di moto gradualmente variato nei canali, per i quali, accanto alla più generale equazione differenziale, si presenta anche quella basata sull'ipotesi di Bresse (1860). Analogamente, molte dimostrazioni, come quella dell'equazione di continuità, vengono condotte con la metodologia classica dell'idraulica italiana, presentando, tuttavia, anche il teorema del trasporto di Reynolds come metodo alternativo. Infine, si sottolinea la presenza di un capitolo sull'argomento del moto vario delle condotte in pressione, non sempre presente in alcuni testi, ma ritenuto giustamente fondamentale in molti corsi di idraulica tenuti presso i corsi di laurea in ingegneria delle università italiane.

A distanza di circa dieci anni dalla pubblicazione della prima edizione, questa seconda edizione è stata ampliata, riveduta e corretta. In particolare, ora il libro contiene **tre nuovi capitoli**, ossia quello sui moti a potenziale, quello sui flussi esterni ai corpi e quello sulle acque sotterranee. Inoltre, nel *Capitolo 11* sulle correnti a superficie libera è stato inserito un paragrafo, nel quale, ancorché in modo sintetico, sono riportati dei cenni sul trasporto solido.

La seconda edizione riporta anche **tutte le soluzioni degli esercizi proposti**, utilizzando anche il *Computable Document Format* (CDF), messo a disposizione gratuitamente da *Wolfram*.

In accordo con la casa editrice, la nuova edizione esce anche in ebook, in modo da essere al passo con i tempi e consentire la lettura del testo anche a coloro che preferiscono questo formato.

Gli autori sperano di avere raggiunto l'obiettivo di aver realizzato un libro, ma anche un sistema multimediale, formato da codici CDF e filmati, che possa accompagnare gli studenti di Ingegneria o di altri corsi di laurea nel loro percorso formativo, sollecitando il loro interesse e amore nei confronti della materia. Cosa analoga si spera di avere raggiunto

© 978-88-08-99977-1 Prefazione XV

con i professionisti che trovassero nel testo una ragione di approfondimento delle loro conoscenze.

La seconda edizione tiene anche conto delle correzioni che si sono rese necessarie rispetto alla prima. Gli autori desiderano ringraziare l'editore per il lavoro svolto. Certo, come sempre, il giudizio finale spetta a coloro che leggeranno il libro, con i quali gli autori si scusano per eventuali e inevitabili errori o inesattezze, ringraziandoli fin da ora per la cortesia che vorranno avere segnalandoli, al fine della redazione di una errata corrige.

Gli strumenti per l'apprendimento

Il testo presenta una trattazione matematica dei vari problemi dell'idraulica, seguiti sempre da una serie di applicazioni, molte delle quali già svolte. Nella consapevolezza dell'importanza delle immagini nell'idraulica, il testo riporta molte figure, diagrammi e foto. A tal riguardo gli autori hanno messo a frutto un'esperienza acquisita attraverso la *IAHR Media Library* (la biblioteca multimediale della *International Association for Hydro-Environment Engineering and Research*), una risorsa web, per la diffusione di filmati, foto e strumenti didattici nel campo della meccanica dei fluidi e, in generale, dell'ingegneria a essa legata. L'importanza delle immagini nella meccanica dei fluidi ha origini anche più antiche, come si evince dalla pubblicazione nel *Catalog of Motion Pictures of Research - Data in Fluid Mechanics and Heat Transfer, Journal of Fluids Engineering* (Transactions of the ASME, pp. 151-155, 1976.), il *Fluid Mechanics Committee* dell'ASME (l'*American Society of Mechanical Engineering*) realizzò un catalogo di filmati promosso attraverso la *Engineering Societies Library*.

In ogni capitolo del libro sono presenti dei **richiami a lato** (spesso con immagini e specifici simboli) che portano immediatamente l'attenzione di chi legge su quanto cercato. L'utilizzo dei suddetti richiami e la presenza di diverse pagine di approfondimento, spesso impostate con la logica della domanda e risposta, consentono un più facile **autoapprendimento**. Il testo si presenta in una **forma mista** (**carta**, **ebook** + **materiale online**), come attualmente si preferisce per i testi universitari.

All'indirizzo universita.zanichelli.it/mossa2e sono disponibili i file delle soluzioni di tutti gli esercizi proposti nel libro e di altri ancora, utilizzando una modalità interattiva, che consente il cambiamento dei dati di input, e il formato *Computable Document Format* (CDF). Tale formato, ideato dal gruppo *Wolfram* (quelli del programma *Mathematica**) è forse l'unico tentativo esistente e funzionante di un formato di visualizzazione del file che permetta un certo tipo di interazione con l'utente. Particolarmente adatto nella rappresentazione di grafici e funzioni, e più in generale di argomenti scientifici, ha trovato applicazione anche in altri campi. I file sono eseguibili con il player gratuito scaricabile dall'apposito sito della *Wolfram* (www.wolfram.com/player/). Per maggiori dettagli si può consultare il sito www.wolfram.com.

All'indirizzo universita.zanichelli.it/mossa2e sono inoltre disponibili i link a **filmati** di meccanica dei fluidi presenti nel succitato sito di *IAHR Media Library*. I filmati sono in lingua inglese e ciò, certamente, aiuterà gli studenti nella comprensione dei termini tecnici in questa lingua. In ogni caso vengono messi a disposizione dei file che riportano la **traduzione** in italiano dell'intero parlato di ciascun video e una breve descrizione dei filmati stessi, oltre che l'indicazione dei capitoli del libro più attinenti ai filmati.

Il sito web della casa editrice è utile anche per i docenti, che potranno scaricare e utilizzare le immagini presenti nel testo per preparare le proprie presentazioni didattiche. Inoltre, sempre nel sito del libro, sono disponibili alcuni **esercizi supplementari**, per la cui soluzione è necessario risolvere dei sistemi di equazioni, talvolta anche non lineari.

Come è organizzato questo libro

Il testo è ricco di apparati che movimentano la presentazione e che favoriscono la lettura e la focalizzazione di argomenti e contenuti specifici.

Fluidi non newtoniani I fluidi non newtoniani, il cui studio ha ricevuto un notevole sviluppo più recentemente, in seguito al loro impiego sempre più largo, vengono classificati in diverse categorie:

- fluidi a comportamento indipendente dal tempo;
- · fluidi a comportamento dipendente dal tempo;
- fluidi elastoviscosi.

I fluidi non newtoniani sono delle sostanze che, pur essendo praticamente prive di forma propria come i fluidi newtoniani, mostrano un comportamento diverso da essi, nel senso che il legame tra sforzo tangenziale t e velocità di deformazione angolare non è più rappresentato da una retta passante per l'origine.

 Fluidi a comportamento indipendente dal tempo I fluidi a comportamento indipendente dal tempo presentano un'equazione reologica del tipo

$$\tau = f(\tilde{\theta})$$
 (1.11)

in cui non compare la variabile temporale. Si distinguono in:

- · fluidi alla Bingham;
- fluidi dilatanti;
- fluidi pseudoplastici.

Evidenziazioni nel testo con richiami a lato.

Approfondimenti evidenziati dal fondo colorato (osservazioni, esempi, approfondimenti, curiosità ecc.).

BOTTE DI PASCAL

Blaise Pascal, filosofo, scienziato e scrittore francese (Clermont, Auvergne, 1623-Parigi, 1662), realizzò una nota esperienza legata al paradosso idrostatico, nota come la botte di Pascal. Si tratta di una botte piena d'acqua che superiormente termina in un lungo cannello molto sottile. Versando acqua nel cannello, quando in esso il livello raggiunge una certa altezza, indipendente dal diametro del cannello, la botte si sfascia. Questa esperienza, ideata da Pascal, mostra come la pressione esercitata dall'acqua su un punto della parete della botte dipenda solo dalla distanza del punto considerato dalla superficie libera dell'acqua nel cannello, ossia dalla linea dei carichi idrostatici relativi, e non dalla massa di liquido che il cannello contiene.

Esercizi risolti

R5.3 Si desidera realizzare un modello fisico di un sommergibile per studiare le resistenze al moto dello stesso quando esso è al di sotto della superficie libera. Si stabilisca la scala delle forze supponendo di utilizzare la scala geométrica 1:20, che la viscosità cinematica dell'acqua di mare sia v=1,30:10 °° m²/s e la sua densità sia 1015 kg/m² alla profondità del prototipo, che la velocità del sommergibile per la quale si vuole condurre l'analisi sia di 4 nodi e che la temperatura dell'acqua dolce che si intende usare per il modello sia di 40 °C.

Risoluzione

Poiché si sta considerando il sommergibile sufficientemente al di sotto del pelo libero, dove l'effetto del moto ondoso è trascurabile, si può ritenere nullo il ruolo del numero di Froude. Viceversa intervengono i numeri di Reynolds e di Eulero. In particolare, osservando che 1 nodo è uguale a 0.5144 m/s e indicando con L_p la lunghezza del prototipo del sommergibile, il numero di Reynolds del prototipo stesso è dato da

$$Re_{p} = \frac{V_{p}L_{p}}{V_{p}} = \frac{2.0576 \cdot L_{p}}{1.30 \cdot 10^{-9}} = 1.583 \cdot 10^{9} L_{p}$$

Poiché il modello del sommergibile avrà una lunghezza uguale a $L_m = L_p/20$ e noto il valore della viscosità dell'acqua dolce alla temperatura di 40 °C (Appendice A), il relativo numero indice di Reynolds sarà

$$Re_m = \frac{V_m L_m}{v_m} = \frac{V_m \left(\frac{1}{20} L_p\right)}{v_p} = \frac{V_m \left(\frac{1}{20} L_p\right)}{0.662 \cdot 10^{-6}}$$

Uguagliando i due numeri indici di Reynolds si ha

$$V_{m} = \frac{0.662 \cdot 10^{-6} \cdot 2.0576 \cdot L_{p}}{(\frac{1}{20} L_{p})} \frac{2.0576 \cdot L_{p}}{1.30 \cdot 10^{-6}} = \frac{20 \cdot 0.662 \cdot 10^{-6} \cdot 2.0576}{1.30 \cdot 10^{-6}}$$

$$= 20.96 \text{ m/s}$$

Si osserva che, applicando l'analogia di Reynolds, viene automaticamente soddisfatta l'analogia di Eulero nell'ipotesi che i fluidi del modello e del prototipo siano uguali come indicato nella Tabella 9.2. Ma non è il caso dell'esercizio in analisi, in cui i fluidi del prototipo e del modello sono differenti. Pertanto, applicando l'analogia di Eulero nel caso del presente esercizio si ha

$$\frac{\Delta p_{p_{in}}}{\rho_{m}V_{m}^{2}} = \frac{\Delta p_{g}}{\rho_{g}V_{g}^{2}} \Leftrightarrow \frac{F_{m}/L_{m}^{2}}{\rho_{m}V_{m}^{2}} = \frac{F_{g}/L_{p}^{2}}{\rho_{g}V_{g}^{2}}$$

avendo indicato con F_m e F_{ϱ} le forze nel modello e nel prototipo. Si ricava

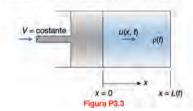
$$\begin{split} F_{b} &= \frac{\rho_{p}}{\rho_{m}} \left(\frac{V_{p}}{V_{in}} \right)^{3} \left(\frac{L_{p}}{L_{m}} \right)^{2} F_{m} = \frac{1}{\lambda_{b}} \left(\frac{1}{\lambda_{v}} \right)^{3} \left(\frac{1}{\lambda_{i}} \right)^{2} \\ &= \frac{1015}{992} \left(\frac{2.0576}{20.96} \right)^{3} 20^{3} = 3.94 F_{m} \end{split}$$

Pertanto le forze misurate in laboratorio dovranno essere moltiplicate per 3,94 al fine di avere le corrispondenti forze del prototipo.

Alla fine di ogni capitolo è presente un'ampia sezione di esercizi interamente risolti...

Esercizi proposti

P3.1 Dell'acqua defluisce attraverso un serbatoio come riportato nella Figura P3.1. Si ipotizzi che $D_1=8$ cm, $Q_1=1$ m³/s, $D_2=4$ cm con una velocità media $U_2=0$,5 m/s. Nell'ipotesi che $D_3=5$ cm, si calcolimo Q_1 e V_2 .



P3.2 L'ago ipodermico nella Figura P3.2 contiene un siero liquido. Supponendo che il siero debba essere Iniettato con portata costante di 5 cm²/s, si stabilisca la velocità dello stantuffo che dovrà mantenere l'infermiere nell'ipotesi (a) che si possa trascurare la perdita di siero attraverso il gioco dello stantuffo; (b) tale perdita sia del 10% della portata fuoriuscente dall'ago.

P3.3 Un campo di velocità è rappresentato dalla seguente funzione: $V = (3y^2 - 3x^2)i + Cxyj + 0k$. Stabilire per quali valori della costante C (a) il campo di moto è irrotazionale, (b) il fluido è incomprimibile.

P3.4 Un pistone comprime un gas in un cilindro, muovendosi a velocità costante V, come rappresentato nella Figura P3.3. Indicate con ρ_0 e L_0 la densità e la lunghezza del cilindro, rispettivamente, nell'istante di tempo iniziale t=0, supponendo che la velocità del gas vari linearmente da u=V al pistone (x=0) a u=0 per x=L e supponendo che la densità del gas vari solo nel tempo, si trovi un'espressione per $\rho(t)$.

... e una sezione di esercizi proposti con soluzioni online.

A proposito di... modelli e onde

Le foto riproducono dei modelli fisici di porti realizzati presso il LIC (Laboratorio di Ingegneria Costiera) del Politecnico di Bari. I modelli fisici richiedono che la scala geometrica non sia troppo piccola, al fine di non amplificare dei fenomeni indesiderati. È questa

una delle ragioni per cui i laboratori dei modelli fisici in generale e quelli di idraulica marittima in particolare hanno delle grandi dimensioni. Nello specifico il LIC ha una dimensione di circa 12 000 m² a cui va aggiunta l'estensione degli uffici.

(Fonte: fotografie di Michele Mossa)

La parte teorica di ogni capitolo si chiude con una fotografia e il racconto di un aspetto particolare legato all'argomento principale. CEA - Casa Editrice Ambrosiana è un marchio editoriale di Zanichelli editore S.p.A.

Diritti riservati

I diritti di pubblicazione, riproduzione, comunicazione, distribuzione, trascrizione, traduzione, noleggio, prestito, esecuzione, elaborazione in qualsiasi forma o opera, di memorizzazione anche digitale e di adattamento totale o parziale su supporti di qualsiasi tipo e con qualsiasi mezzo (comprese le copie digitali e fotostatiche), sono riservati per tutti i paesi. L'acquisto della presente copia dell'opera non implica il trasferimento dei suddetti diritti né li esaurisce.

Fotocopie e permessi di riproduzione

Le fotocopie per uso personale (cioè privato e individuale, con esclusione quindi di strumenti di uso collettivo) possono essere effettuate, nei limiti del 15% di ciascun volume, dietro pagamento alla S.I.A.E. del compenso previsto dall'art. 68, commi 4 e 5, della legge 22 aprile 1941 n. 633.
Tali fotocopie possono essere effettuate negli esercizi commerciali convenzionati S.I.A.E. o con altre modalità indicate da S.I.A.E.

Per le riproduzioni ad uso non personale (ad esempio: professionale, economico, commerciale, strumenti di studio collettivi, come dispense e simili) l'editore potrà concedere a pagamento l'autorizzazione a riprodurre un numero di pagine non superiore al 15% delle pagine del presente volume.

Le richieste vanno inoltrate a:

Centro Licenze e Autorizzazioni per le Riproduzioni Editoriali (CLEARedi).

Corso di Porta Romana 108, 20122 Milano

e-mail: autorizzazioni@clearedi.org e sito web: www.clearedi.org

L'autorizzazione non è concessa per un limitato numero di opere di carattere didattico riprodotte nell'elenco che si trova all'indirizzo

www.zanichelli.it/chi-siamo/fotocopie-e-permessi

L'editore, per quanto di propria spettanza, considera rare le opere fuori del proprio catalogo editoriale. La loro fotocopia per i soli esemplari esistenti nelle biblioteche è consentita, anche oltre il limite del 15%, non essendo concorrenziale all'opera. Non possono considerarsi rare le opere di cui esiste, nel catalogo dell'editore, una successiva edizione, né le opere presenti in cataloghi di altri editori o le opere antologiche. Nei contratti di cessione è esclusa, per biblioteche, istituti di istruzione, musei e archivi, la facoltà di cui all'art. 71-ter legge diritto d'autore.

Per permessi di riproduzione, diversi dalle fotocopie, rivolgersi a

ufficiocontratti@zanichelli.it

Licenze per riassunto, citazione e riproduzione parziale a uso didattico con mezzi digitali

La citazione, la riproduzione e il riassunto, se fatti con mezzi digitali, sono consentiti (art. 70 bis legge sul diritto d'autore), limitatamente a brani o parti di opera, a) esclusivamente per finalità illustrative a uso didattico, nei limiti di quanto giustificato dallo scopo non commerciale perseguito. (La finalità illustrativa si consegue con esempi, chiarimenti, commenti, spiegazioni, domande, nel corso di una lezione); b) sotto la responsabilità di un istituto di istruzione, nei suoi locali o in altro luogo o in un ambiente elettronico sicuro, accessibili solo al personale docente di tale istituto e agli alunni o studenti iscritti al corso di studi in cui le parti di opere sono utilizzate; c) a condizione che, per i materiali educativi, non siano disponibili sul mercato licenze volontarie che autorizzano tali usi.

Zanichelli offre al mercato due tipi di licenze di durata limitata all'anno accademico in cui le licenze sono concesse:

A) licenze gratuite per la riproduzione, citazione o riassunto di una parte di opera non superiore al 5%. Non è consentito superare tale limite del 5% attraverso una pluralità di licenze gratuite,

B) licenze a pagamento per la riproduzione, citazione, riassunto parziale ma superiore al 5% e comunque inferiore al 40% dell'opera. Per usufruire di tali licenze occorre seguire le istruzioni su www.zanichelli.it/licenzeeducative

L'autorizzazione è strettamente riservata all'istituto educativo licenziatario e non è trasferibile in alcun modo e a qualsiasi titolo.

Garanzie relative alle risorse digitali

Le risorse digitali di questo volume sono riservate a chi acquista un volume nuovo: vedi anche al sito www.zanichelli.it/contatti/acquisti-e-recesso le voci Informazioni generali su risorse collegate a libri cartacei e Risorse digitali e libri non nuovi.

Zanichelli garantisce direttamente all'acquirente la piena funzionalità di tali risorse.

In caso di malfunzionamento rivolgersi a assistenza@zanichelli.it

La garanzia di aggiornamento è limitata alla correzione degli errori e all'eliminazione di malfunzionamenti presenti al momento della creazione dell'opera.

Zanichelli garantisce inoltre che le risorse digitali di questo volume sotto il suo controllo saranno accessibili, a partire dall'acquisto, per tutta la durata della normale utilizzazione didattica dell'opera. Passato questo periodo, alcune o tutte le risorse potrebbero non essere più accessibili o disponibili: per maggiori informazioni, leggi my.zanichelli.it/fuoricatalogo

Soluzioni degli esercizi e altri svolgimenti di compiti assegnati

Le soluzioni degli esercizi, compresi i passaggi che portano ai risultati e gli altri svolgimenti di compiti assegnati, sono tutelate dalla legge sul diritto d'autore in quanto elaborazioni di esercizi a loro volta considerati opere creative tutelate, e pertanto non possono essere diffuse, comunicate a terzi e/o utilizzate economicamente, se non a fini esclusivi di attività didattica.

Diritto di TDM

L'estrazione di dati da questa opera o da parti di essa e le attività connesse non sono consentite, salvi i casi di utilizzazioni libere ammessi dalla legge. L'editore può concedere una licenza. La richiesta va indirizzata a tdm@zanichelli.it

Realizzazione editoriale: Epitesto, Milano

Copertina:

- progetto grafico: Falcinelli & Co., Roma
- realizzazione: Sara Travella/GALLINE A POIS, Milano
- immagine di copertina: © filo/iStockphoto

Prima edizione italiana: ottobre 2013 Seconda edizione italiana: maggio 2024

Ristampa: prima tiratura

5 4 3 2 1 2024 2025 2026 2027 2028

Realizzare un libro è un'operazione complessa, che richiede numerosi controlli: sul testo, sulle immagini e sulle relazioni che si stabiliscono tra essi. L'esperienza suggerisce che praticamente impossibile pubblicare un libro privo di errori. Saremo quindi grati ai lettori che vorranno segnalarceli.

Per segnalazioni o suggerimenti relativi a questo libro rivolgersi a: segreteria cea@ceaedizioni.it

Per comunicazioni di tipo commerciale rivolgersi a: universita@zanichelli.it

Stampa:

per conto di Zanichelli editore S.p.A. Via Irnerio 34, 40126 Bologna

Michele Mossa Antonio Felice Petrillo

Idraulica

Seconda edizione

Inquadra e scopri i contenuti

Le risorse digitali

universita.zanichelli.it/mossa2e

A questo indirizzo sono disponibili le risorse digitali di complemento al libro. Per accedere alle risorse protette è necessario registrarsi su **my.zanichelli.it** inserendo il codice di attivazione personale contenuto nel libro.

Libro con Ebook

Chi acquista il libro nuovo può accedere gratuitamente all'Ebook, seguendo le istruzioni presenti nel sito.

L'accesso all'Ebook e alle risorse digitali protette è personale, non condivisibile e non cedibile, né autonomamente né con la cessione del libro cartaceo.

La seconda edizione di *Idraulica* offre tutte le nozioni di base della disciplina necessarie a chi studia Ingegneria, integrando la trattazione matematica con applicazioni ed esercizi risolti. Gli undici capitoli di cui si compone affrontano statica, cinematica e dinamica dei fluidi, modellistica fisica idraulica. moto permanente e vario delle condotte in pressione e, introdotti in questa seconda edizione, moti a potenziale, moti esterni ai corpi, moti di filtrazione e cenni di trasporto solido nelle correnti a pelo libero. Le oltre 600 figure a colori che accompagnano la dimostrazione dei teoremi e lo svolgimento degli esercizi sono fondamentali per l'apprendimento, così come i frequenti approfondimenti (osservazioni, esempi, curiosità), gli esercizi risolti alla fine di ogni capitolo e gli *esercizi proposti*, le cui soluzioni sono disponibili in formato digitale, insieme a esercizi supplementari e video.

Le quattro Appendici sono dedicate, rispettivamente, alle proprietà dei fluidi, alle nozioni di base di algebra e geometria delle masse, indispensabili per affrontare questa disciplina, al teorema del trasporto di Reynolds e all'equazione globale del momento della quantità di moto. Gli autori hanno voluto salvaguardare alcuni aspetti propri dell'approccio classico dell'idraulica italiana, ben consolidati a livello internazionale, rendendo l'opera anche un testo di riferimento per chi esercita un'attività professionale in un ambito ingegneristico, geologico o di altro tipo, che richieda di conoscere leggi e casi pratici dell'idraulica.

Michele Mossa è professore ordinario di Idraulica presso il Politecnico di Bari e presidente del Comitato Tecnico Internazionale dell'Ecoidraulica dell'IAHR (The International Association for Hydro-Environment Engineering and Research).

Antonio Felice Petrillo è stato professore ordinario di Idraulica al Politecnico di Bari, dove ha ricoperto anche i ruoli di direttore del Dipartimento di Ingegneria delle acque e responsabile scientifico del Laboratorio di Ingegneria Costiera (LIC).

MOSSA"PETRILLO*IDRAULICA 2ED(CEALUMKQ

ISBN 978-88-08-99977-1

567890123 (64L)