
A.A. 2018/19 Corso di Laurea Ingegneria per l'Ambiente e il Territorio Idraulica Ambientale - Esonero sulle reti idriche

Traccia A

ESERCIZIO I

Data la rete aperta riportata in figura (rappresentazione non in scala) costituita dai tre serbatoi A, B e C e in cui la portata deve fluire secondo i versi riportati (si tenga conto che nel tratto EF viene uniformemente distribuita la portata q), si chiede di:

- 1) calcolare la portata che giunge al serbatoio C
- 2) valutare le quote piezometriche in E e F secondo il metodo di Marzolo;
- 3) tracciare l'andamento qualitativo delle piezometriche sull'intera rete;
- 4) progettare i diametri commerciali del tronco FC, le relative lunghezze e disegnare le relative linee piezometriche, in aggiunta alla piezometrica teorica;
- 5) progettare il tronco **FB** e valutare la potenza della pompa (di rendimento η) da porre in **F**.

Dati:

$$\begin{array}{lll} L_{AE} = 7 \ Km & Q_{AE} = 350 \ l/s \\ L_{EF} = 3 \ km & Q_{FB} = 150 \ l/s \\ L_{FC} = 2 km & q = 0.04 \ l/(s \cdot m) \\ L_{FB} = 2 km & \gamma_{\rm Bazin} = 0.16 \ m^{0.5} \\ H_A = 300 \ m & \gamma_{H_2O} = 9810 \ N/m^3 \\ H_C = 100 \ m & \eta = 0.65 \\ H_B = 550 \ m & \end{array}$$

ESERCIZIO II

Sia data una condotta di diametro D_1 =300mm, lunghezza L=4Km e coefficiente di scabrezza di Bazin γ =0.16 $m^{1/2}$, congiungente il serbatoio A col serbatoio B, con peli liberi rispettivamente a quote H_A =600m e H_B =250m. Si chiede quanto segue:

- 1) la portata Q nella condotta;
- 2) valutare la potenza di una pompa posizionata a L_1 =1500m di distanza dal serbatoio A per avere un aumento di portata rispetto a Q del 30% (rendimento pompa η =0.60) e disegnare l'andamento delle linee piezometriche;
- 3) valutare quale potenza deve avere la pompa del punto 2) qualora si chiedesse di far viaggiare in condotta la massima portata possibile (rendimento pompa $\eta=0.65$) e disegnare l'andamento delle linee piezometriche.

OEF	USCENTE=	120	1/s

Portata che giunge in C:

 $Q_{FC} = 80 \text{ 1/s}$

Portata di estremità tratto EF:

 $Q_F = 230 \text{ } 1/\text{s}$

Portata fittizia tratto EF:

 $Q_{EF} = 296 \text{ 1/s}$

Metodo Marzolo tratto AEFC:

NODI [-]	TRONCHI [-]	LUNGHEZZA [m]	PORTATA [m³/s]	$L\sqrt[3]{Q}$	$\frac{L\sqrt[3]{Q}}{\sum_{i}L_{i}\sqrt[3]{Q_{i}}}Y_{AD}$	H [m]
Α						300
	AE	7000	0.35	4933.11	126.58	
Е						173.42
	EF	3000	0.296	1999.33	51.30	
F						122.11
	FC	2000	0.08	861.77	22.11	
С						100
				7794.22		

Carichi in E, F:

 $H_E=173.42 \text{ m}$

 $H_F = 122.11 \text{ m}$

Diametri commerciali e lunghezze per il tratto FC:

 $u_{teorico}=1.73 \text{ s}^2/\text{m}^6$

 $D_1=0.275 \text{ m}$

 $u_1 = 1.412363744 \text{ s}^2/\text{m}^6$

 $L_1=1334.4 \text{ m}$

D₂=0.250 m

 $u_2 = 2.35955104 \text{ s}^2/\text{m}^6$

L₂=665.6 m

Diametro commerciale tratto pompa FD:

$$D_{FB} = 0.600 \text{ m}$$

$$u=0.022s^2/m^6$$

Prevalenza geodetica:

Perdita distribuita:

H=0.99m

Carico pompa:

 $\Delta H = 428.88 m$

Potenza della pompa:

P=0.97 MW

Soluzione ESERCIZIO II

1) Si utilizza la formula di Darcy, nell'ipotesi che il moto sia assolutamente turbolento:

$$Q = \left(\frac{H_A - H_B}{u \, L}\right)^{0.5} = 0.31 \frac{m^3}{s}$$

dove

2) In presenza della pompa la nuova portata è:

$$Q_* = 1.3 Q = 0.4087 \frac{m^3}{s}$$

Il carico in aspirazione è dato da:

$$H_{sx} = H_A - u \, Q_*^2 \, L_1 = 378.3 \; m$$

In mandata esso deve essere pari a:

$$H_{dx} = H_B + u\,Q_*^2\,(L-L_1) = 619.5\,m$$

La potenza sarà data da:

$$P = \frac{\rho g(H_{dN} - H_{SN}) Q_{*}}{n} = 1.6kW$$

3) In corrispondenza della pompa posizionata a distanza L₁ dal serbatoio di monte, la massima portata possibile si ha, al limite, per un carico in aspirazione di circa -10.32m. Ne deriva che la cadente massima che può insistere sulla condotta ha il valore di:

$$I_{\text{max}} = \frac{II_A + 10.32}{L_1} = 0.41$$

Esso è anche il valore della cadente nel tratto di valle della condotta, dopo la pompa, per cui il carico in mandata deve essere:

$$J_{\text{max}} = \frac{H_{dx} - H_B}{L - L_1}$$

$$H_{dx} = J_{max}(L - L_1) + H_B = 1267.2m$$

Il carico totale che la pompa dovrà fornire all'acqua è:

$$\Delta H = H_{dx} + 10.32 = 1285.33m$$

Il valore della portata massima è pari a:

$$Q_{\max} = \sqrt{\frac{J_{\max}}{u}} = 0.68 \frac{m^3}{s}$$

La potenza della pompa è, infine:

$$P = \frac{\rho g \Delta H Q_{\text{max}}}{\eta} = 13MW$$