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ABSTRACT 

The Smooothed Particle Hydrodynamics is a Lagrangian mesh-free particle model 
introduced by Gingold and Monaghan (1977). In this paper, the SPH Kernel is 
analyzed in order to find measures of merit for two-dimensional SPH. 
The smoothing function plays a very important role in the SPH approximations, as it 
determines the accuracy of the function representation and the efficiency of the 
computation. The generalized approach in constructing the smoothing functions  for 
the SPH method uses an integral form of function representation with the support of 
the Taylor series expansion. 
In addition to theory, comparisons with physical model runs are analyzed, 
demonstrating the important role of the smoothing function in terms of 
computational accuracy. The SPH model is applied to the modelling of water waves 
generated in the wave flume of the Water Engineering and Chemistry Department 
laboratory of Bari Technical University (Italy). It is shown that the final version is 
able to model the propagation of regular and breaking waves. 

   

1 INTRODUCTION 

The numerical technique (SPH) is a gridless, pure Lagrangian method for solving 
the equations of fluid dynamics.  

In this paper we analyze the key element in the Smoothed Particle Hydrodynamics 
(SPH) method, the SPH Kernel, in order to develop a measure of merit for evaluating 
Kernels in two dimensional SPH.  

The main features of the SPH method, which is based on integral interpolations, 
were described in detail by Monaghan (1982), Benz (1990), Monaghan (1992) and Liu 
(2003). 

The alternative view is that the fluid domain is represented by nodal points that are 
scattered in space with no definable grid structure and move with the fluid. Each of 
these nodal points carry scalar information, density, pressure, velocity components and 
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so on. To find the value of a particular quantity f at an arbitrary point, x, we apply an 
interpolation: 
                                              ∑ −=

j
jjj VxxWfxf )()(                          (1) 

Here fj is the value of f associated with particle j, located at xj, W(x-xj) represents a 
weighting of the contribution of particle j to the value of f (x) at position x, and Vj is the 
volume of particle j, defined as the mass, mj, divided by the density of the particle ρj. 
The weighting function, W(x-xj), is called the Kernel and varies with the distance from 
x. 

The Kernel is assumed to have compact support, so the sum is only taken from 
neighboring particles. Some background in SPH is assumed in this paper; readers are 
referred to an overview by Monaghan (1992), while for recent applications of SPH see 
Dalrymple & Rogers (2006). To some extent it should not matter which Kernel is used 
in SPH as long as basic requirements are met. This is especially true in the limits where 
h (the Kernel smoothing length) and Δx (the interparticle spacing) become small. 

 However, when these are not small, as is common in practice, the choice of Kernel 
can drastically change the computational results. Hence, the choice of Kernel, h and Δx 
is a key decision before performing any calculation using SPH. This paper provides an 
objective means of separating better from poorer Kernel performance in terms of Δx/h 
value.  

In performing the analysis we consider the cubic spline Kernel and its first 
derivative. 

Monaghan & Lattanzio (1985) devised the following function based on the cubic 
spline function known as the B-spline function: 
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where R = rij/h, rij=|x-xj| and αd =1/h for 1D, αd =15/πh2 for 2D, and αd =3/2πh2 for 3D. 

The cubic spline function has so far been the most widely used smoothing function 
in emerging SPH literature, since it resembles a Gaussian function while having a 
narrower compact support. 

The SPH model is applied to the modelling of water waves generated in the wave 
flume of the Water Engineering and Chemistry Department laboratory of Bari Technical 
University (Italy).  

2 NUMERICAL TESTS AND EXPERIMENTAL SET-UP 

     The efficiency and accuracy of the constructed smoothing functions have also 
been shown in various literatures for all existing smoothing functions. Readers are 
referred to work by Fulk & Quinn (1995). 
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Presented here are two numerical examples using the cubic spline function of 
equation (2).  

The implemented numerical code was first tested using physical experiments on 
wave motion fields by De Serio & Mossa (2006).  

The experiments were performed in a wave channel 45 m long and 1 m wide. The 
iron frames supporting its crystal walls are numbered from the shoreline up to the 
wavemaker (section 100), thus locating measurement sections which have a center to 
center distance equal to 0.44 m. From the wave paddle to section 73 the flume has a flat 
bottom, while from section 73 up to the shoreline it has a 1/20 sloped wooden bottom. 
A sketch of the wave flume is shown in Fig. 1. 

Further details about the experimental tests carried out can be found in De Serio & 
Mossa (2006). 
 

 
Figure 1. Sketch of the wave flume. 

 
The water depth, the wave height and the period were equal to 0.70 m, 0.11 m and 

2s, respectively, in section 0.5 m offshore section 76 (Fig. 2).  
 

 
Figure 2. Measurement sections. 

 
The simulations in the present paper used an artificial viscosity with an empirical 

coefficient α equal to 0.055 (Monaghan, 1992). Each wall in the computational wave 
tank was built with two parallel layers of fixed boundary particles set out in a staggered 
manner described by Dalrymple & Knio (2000). In this approach the boundary particles 
share some of the properties of the fluid particles, but their velocities are zero and their 
positions remain unchanged. The choice of the Δx/h term depends on the physical 
process of the problem and the desired computational accuracy and efficiency. 
However, if an interval of Δx/h value is studied, the quality of Kernel as particle 
movement can be deduced. As shown in Fulk & Quinn (1995), for almost every Kernel, 
the results start to become relatively poor when Δx=h. However, we verified this result 
for SPH calculations. The particle spacing is taken as Δx=Δz=0.022 m and thus 
approximately 30,000 particles are used. For a comparison between computational 
accuracies, we used a smoothing length of h=0.0305 m and h=0.0212 m and, thus, a 
value of Δx/h=0.7213 and Δx/h=1.0377 was used (Table 1). 
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Test Time Simulation  
[s] 

Particle 
number Δx/h 

1 20s 30,000 0.7213 
2 20s 30,000 1.0377 

Table 1. Characteristics of SPH simulations. 

The study made particular reference to the velocity and free surface elevation 
distributions with the aim of analysing the performance of  Kernel in terms of stability 
in the fluid. The final model proved capable of reproducing the experimental 
propagation of regular and breaking waves. 

3 RESULTS  

The experimental and numerical wave profiles at the location of measurement points 
are shown for both cases. For the sake of brevity only the results of sections 55-49 (see 
Fig. 2) will be shown. For a defined section, we can study the distribution along the 
channel of the wave elevation and the horizontal and vertical velocity components for 
both tests. 

Figures 3a÷ 3c and 4a÷ 4c show the agreement of numerical data obtained by 
means of the two SPH models with experimental data. In Figs. 3a÷ 3c and 4a÷ 4c it 
can be seen that the numerical elevations and the numerical velocities obtained by 
means of the second test of Table1, are not in perfect agreement with the experimental 
measurements for the strong effect of the Δx/h term. In fact, when this value is close to 
1 (Test 2), the computational results can drastically change for the worse. 

With a smaller value of the Δx/h term (Test 1), numerical elevations and the 
numerical velocities are shown to be in better agreement with the experimental 
measurements (Figs. 3a÷ 3c and 4a÷ 4c ).  
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Figure 3a. Comparison of experimental and numerical wave surface elevation  

(section 55). 
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Figure 3b. Comparison of experimental and numerical horizontal velocity components  

(section 55, 0.1 m from the bottom).  
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Figure 3c. Comparison of experimental and numerical vertical velocity components 

(section 55, 0.1 m from the bottom).  
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Figure 4a. Comparison of experimental and numerical wave surface elevation  

(section 49). 
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Figure 4b. Comparison of experimental and numerical horizontal velocity components  
(section 49, 0.1 m from the bottom).  
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Figure 4c. Comparison of experimental and numerical vertical velocity components 

(section 49, 0.1 m from the bottom). 
 

Although Figs. 3a÷ 3c and 4a÷ 4c provide good qualitative results, it is desirable to 
obtain quantitative results as well. Overall statistical parameters can provide a more 
detailed picture of the breaking model performance. Figure 5 shows standard deviations 
of measured and computed surface elevations of sections 76, 55, 49, 47 and 45 (Fig. 2).           

Skewness (Kennedy et al., 2000), a measure of crest-trough shape, is computed and 
shown in Fig. 6. Test 1 predicts this parameter very well; in fact the trend of wave 
skewness increases as the wave shoals and breaks, and decreases near the shoreline 
(section 49). Instead, in the case of Test 2 of Table 1, when the value of Δx/h term is 
close to 1, the computational results change for the worse and the trend of wave 
skewness is not well predicted, in particular in sections 47 and 45, where the wave 
surface profiles are characterized by a rapid change in shape.                                                                               

This result shows how a good efficiency of the Smoothed Particle Hydrodynamics    
Kernel is not obtained for all values of Δx/h. 
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Figure 5. Comparison of experimental and numerical standard deviation of surface wave 

elevations. 
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Figure 6. Comparison of experimental and numerical skewness of surface wave elevations. 

4 CONCLUSIONS 

This paper presents the modelling of the propagation of regular and breaking waves 
using the SPH approach. Comparisons with physical model runs are analyzed, with the 
aim of showing how the efficiency of the SPH Kernel depends on the choice of the Δx/h 
term. In the runs of the present paper, we observed that in cases with a higher value of 
the Δx/h term, the numerical wave surface elevations and velocities were not in good 
agreement with the experimental ones. The results with a Δx/h value lower than 1 show 
a better reproduction of the experimental values. 

These results highlight the fact that, for a certain Smoothed Particle Hydrodynamics 
Kernel, it is important to define and use a correct value of the Δx/h term in the model. 
This is particularly useful in selecting the initial particle separation for a given Kernel. 

Therefore, generally speaking, an appropriate value of Δx/h term should be used for 
a settled Kernel in order to obtain good results. 
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