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ABSTRACT 

The kinematics of a regular wave field has been investigated in 
order to determine the best mathematical representation. The paper 
describes the comparison between many theoretical models reported 
in literature and the experimental results obtained in a bidimensional 
channel at the laboratory of the Department of Water Engineering of 
the Polytechnic of Bari. First of all the classic wave theories have 
been discussed in order to evaluate the horizontal and vertical 
velocities. Then, the theoretical models (linear and non-linear), 
which link wave elevations and velocity components, have been 
tested by comparing the numerical results with the laboratory LDA 
measurements carried out in a channel with a sloped bottom. In the 
present paper the models proposed by Chakrabarti and by Koyama 
and Iwata have been applied, giving a relationship between time 
series of velocity components and wave elevations. Furthermore, a 
linear transfer function between the elevation amplitude spectra and 
the orbital velocity component ones has been investigated. The waves 
generated in the channel are regular (i.e. waves with a permanent 
form) non-linear waves which can be approximated with 2nd order 
Stokes in the deeper water sections of the channel, following the 
classic criteria. 

KEY WORDS: Regular waves; Non-linear waves; Engineering 
approximations; Kinematics; Wave orbital velocity. 

INTRODUCTION 

A reliable description of the wave kinematics is very important 
to know the dynamic action of waves on structures and to predict 
coastal sediment transport processes. In order to obtain a correct 
understanding of the phenomena, many authors have recently 
proposed mathematical models and approximate methods able to 
describe the wave motion field both in deep and shallow water. 

The problem has been well known since the last century, when 
the first classic theories were developed. Although these theories are 
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still actual, they imply some hypotheses which are often not realistic 
and, thus, they need to be reviewed in the light of new numerical and 
experimental studies. 

Relevant mathematical models can simulate the regular waves 
quite well within a range of validity in which the aforementioned 
hypotheses are quite acceptable. Regular waves can be reproduced in 
laboratory and are characterised by a constant form in time domain. 
Lately new methods for estimating wave orbital velocity have been 
studied in the light of experimental observations. These studies are 
preliminary for random waves which indeed can be studied by 
extending results on regular waves. 

This paper presents a study of the transfer functions linking the 
local time history of elevations with the local velocity field. This 
procedure is useful because it is easier to measure in situ wave 
elevations (or to forecast them with statistical methods) than the 
velocity components. In recent years some methods which link wave 
elevations with velocity components have been studied, although the 
theoretical results are not yet supported enough by experimental 
results. 

The merit of some of these methods is the simplification of the 
mathematical procedures. In fact, the increase of difficulties in a 
mathematical solution, to better the simulation of physical processes. 
does not always mean more reliable results. Moreover, some authors 
(Dean , 1970; Graw, 1994) agree that it is not always possible to 
evaluate all the characteristics of a wave field by using only one 
method with the same level of accuracy. On the contrary, it can be 
possible, for the same wave field, that a theory approximates a 
quantity better, and another one can be successfully used to interpret 
other quantities. 

The aim of this paper is to investigate the wave velocity results 
obtained with some mathematical models and compare them with 
experimental measurements to determine when to use one model 
rather than another one. The models were used to interpret the same 
waves moving in a channel with a sloped bottom, where shoaling 
effects are evident. 

The comparison of calculated velocities with the measured ones 
can be carried out both in time and frequency domains. In the present 
paper theories and measurements were compared in frequency 
domain, by defining a relative error. 



THEORETICAL SOLUTIONS 

Firstly, classic theories have been applied to obtain reference 
results for modern methods. To this purpose 2nd and 3rd order 
Stokes have been applied according to the typical classification 
criteria. Indeed almost all the investigated waves fall in the range of 
validity of 2nd and 3rd order Stokes theory. 

Stokes waves have been studied by many researchers who gave 
different mathematical solutions. Fenton (1985) gave a decisive 
contribution to the understanding of fifth-order Stokes theory for 
steady waves. He stated that the waves travel at Stokes' first 
definition of wave speed. In Fenton's solution, some of the 
disadvantages of previous theories have been shown by assuming the 
expansion parameter ak in which a, having no physical significance 
other than that of being a length scale, is supposed to be equal to 
H/2. In such a way the expressions for the coefficients of higher order 
terms are functions of the dimensionless depth kh, so that the only 
unknown is the wave number k. The suggested procedure ensures the 
convergence of the series expansions for waves approaching the 
maximum steepness as observed by Rebaudengo Lando and Scarsi 
(1995), who applied Fenton's assumptions to develop a non-linear 
model for directional random waves. As Fenton stated, the classic 
Skjelbreira and Hendrikson (1960) solution for higher order Stokes 
waves contains errors of the fifth order; moreover the theory 
suggested by Fenton has been shown to be quite accurate for waves 
shorter than 10 times the water depth. 

The waves investigated in this study, as already said, can be 
generally approximated with the 3rd order Stokes theory. In this 
study a third order solution as reported in Sawaragy (1995) has been 
used while the equation in CERC (1984) has been employed to 
calculate the wave length. 

The previous theories allow the prediction of both elevations and 
velocities, once depth, wave height and length (or period) are known; 
for practical purposes, it can be useful to evaluate the velocity field 
starting from elevation time history with the following equations: 

u(t) =Hu (h,T,Z) TJ(t} 

w(t) = Hw (h,T,Z) TJ(t+LJ.t) 
(1) 

in which Hu and Hw are the transfer functions and the terms u and w 
are the horizontal and vertical orbital velocity components 
respectively, 77 is the wave elevation, Z is the distance from the 
bottom, h is the local depth, Hand Tare the wave height and period, 
k is the wave number and LJ.t represents the delay between the wave 
elevation values and vertical velocity ones, assumed to be equal to 
T/ 4 according to classic theories. It should be mentioned that the 
theoretical phase shifting among velocity components and elevations, 
assumed to be zero for the horizontal component and 7t/2 for the 
\'ertical one, should be reviewed in the light of the recent experiences 
(Damiani and Mossa, 1996b) showing different values of the 
aforementioned shifting. Sometimes it can be useful to replace the 
second equation (1) with a relationship between u and w by 
introducing the function Hu-w which links the two velocity 
components. Thus the problem is the research of the better transfer 
functions linking the wave elevations with the velocity field. 

The transfer functions can assume a linear form (Koyama and 
Iwata, 1986); in this way, if the elevations follow the small 
amplitude wave theory, the equations (1) become formally identical 
to Airy formulation. For non-linear waves Koyama and Iwata 
suggested a modified equation for the transfer function of the first 
equation (1), to evaluate horizontal velocity under the crests. 
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Consequently, also the vertical velocity is modified by applying the 
function Hu-w· 

The later two methods give a description of velocity field once 
the time history of wave elevations is known. It can be useful to 
decompose the wave surface profile into Fourier components. 

Waitering and Daemrich (1995) applied the linear theory to each 
frequency component of a regular wave elevation spectrum obtaining 
the velocity component spectra. Basically they treated the spectrum 
like a superposition of small amplitude waves still resulting in a 
small amplitude wave. In this procedure, for each frequency 
component, a transfer function assuming the same equation proposed 
by Koyama and Iwata has been applied. The linear method of 
Koyama and Iwata gives the same results of the procedure of 
Woltering and Daemrich only if the considered waves are 
monochromatic, that is when the spectrum is chracterized by only one 
peak. 

Waitering and Daemrich (1994) suggested also a Lagrangian 
approach to take into account the non-linearities in Stokes waves. 
They found that for wave groups the linear method overestimated the 
experimental velocities under the crests, while the non linear method 
gives more reasonable results. 

Although Stokes' theory is not valid above the mean water level, 
it has often been used to find the velocity components between the 
trough and the crest. Measurements of wave kinematics indicate that 
the horizontal velocity is smaller at the crest and higher in the trough 
than predicted by Stokes higher order theories (Gudmestad and 
Connor, 1986). Many engineering approximate methods have been 
developed in order to go over these limits. 

Gudmestad and Connor (1986) report some of these methods for 
non linear deep water waves, consisting in empirically modifed small 
amplitude wave theory equations (Wheeler and Chakrabarti methods) 
or in assuming a constant velocity potential above the still water 
level (Mo and Moan method). The first two methods predict higher 
trough velocities and lower crest velocities than the linear theory and 
the higher order Stokes theories. Gudmestad and Connor proposed 
also an approach to obtain second order correction terms to the 
engineering approximations, by following an expansion procedure. 
Particularly, in the present paper Chakrabarti (1971) method and its 
second order approximation (Gudmestad and Connor, 1986) have 
been applied to interpret the experimental velocity measurements in 
the whole wave field. The experiments of Gudmestad and Connor 
confirm the validity of the second order expansion of Chakrabarti 
method. 

All the previous theories have been extended to random waves 
by Vis (1980), Guza and Thornton (1980) , Rebaudengo Lando and 
Scarsi (1995) and other Authors. The former analysed the linkage 
between wave elevation amplitude spectra and velocity component 
ones. They found a good agreement with experimental results bv 
using a linear transfer function not only for narrow band spectra, but 
also for spectra with a remarkable spreading in frequency or for 
clearly non linear waves. 

Rebaudengo Lando and Scarsi (1995) developed a third order 
model able to describe both time history of the surface elevations and 
wave kinematics of unidirectional and multidirectional random 
waves obtaining a good agreement with the laboratory data. 

The previous theories give reasonable results in the majority of 
waves of maritime interest. The open question is the definition of 
ranges in which the best method should be selected. A contribution 
in answering to this question was given by Hattory (1986) who 
suggested a method to recognise the best fitting theory by comparing 
the maxima and minima theoretical and experimental velocities. Vis 
(1980) assumed the error to be equal to the mean of the difference 



between the theoretical and measured spectral frequency components 
rated by the latter one. 

The experiments hereafter presented have been used to analyse 
in frequency domain the validity of some of the previous theories for 
regular waves, and the criteria suggested by Vis have been used in 
evaluating the errors. 

The velocity field was measured using a LDA system (Damiani 
and Mossa, 1996a). A 5 W Ar-Ion laser was used; in the transmitter, 
the incoming beam from the laser is divided into two pairs of laser 
beams of green and blue colors for measurements of two velocity 
components. At the same time a frequency shift is added to one beam 
of each beam pair to allow the measurements of the reversing flow. 
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Fig. 1 Wave channel and horizontal mean velocity profiles. 

EXPERThtfENTAL SET-UP 

The experiments were carried out in the wave flume at the 
laboratory of the Water Engineering Department of the Polytechnic of 
Bari (figure 1). The channel is about 45 m long and 1 m wide; its 
walls consist of crystal glass sheets 1.2 m high, supported by iron 
frames with a center to center distance of about 0.44 m, where wave 
measurement sections (numbered from the shoreline to the wave 
paddle) have been located. The channel has a 1/20 sloped wooden 
bottom from the shoreline to section 73 and a horizontal bottom from 
section 73 to the wave paddle; during the tests the mean water depth 
in the channel near the paddle was 0.7 m. The wave generation 
system consists of a flat paddle which receives a rotatory­
translational motion, through a kinematic mechanism with an 
oleodynarnic system driven by an electrical valve and controlled by a 
process computer. 
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A probe with optic fibre cable is connected to the transmitter 
using precision-adjustable manipulators. A Dantec LDA signal 
processor (58N40 FVA Enhanced), based on covariance techniques, 
was used. Wave elevations were measured by means of resistance 
probes simultaneously to velocity acquisition. This allows the phase 
shifting between elevations and velocity components to be evaluated. 

ln table 1 the main characteristics of the tested waves are 
reported in the sections where measurements of both elevations and 
velocity components were made. LA represents the wave length 
evaluated \V:ith Airy theory. The last two columns report the Ursell 
number and Goda non-linearities parameter respectively. 

Figure 1 shows the experimental mean horizontal velocity for 
the first attack of table 1, together with the experimental channel. 
The plus sign (the left side of the diagrams with respect to the 
measurement section) indicates an onshore velocity direction, while 
the minus sign (the right side of the diagrams) shows an offshore 
mean velocity direction. It can be observed that in the sections 
nearest the shoreline a strong offshore directed current is present. 



This is due to the breaking occurring around section 48, thus, the 
undertow current takes place and turbulence is the dominant action 
governing the process. This region will be disregarded in the 
discussion of results because of the poor consistency of the 
theoretical hypotheses. 

In many cases the velocity components between trough and crest 
were measured. Unlike Steve and Wind (1982) the instrumentation 
used here permits to analyse these values. 

SECTION h[cm] H[cm] T [s] LA[m] u TI 

ATTACK 1 

76' 70 {){) Q 07 1 60 '4, '.l A"I 0 {)At::"I 

76 70.00 9.82 1.60 3.43 3.37 0.0455 

63 48.80 8.73 1.60 3.05 6.99 0.0643 

62 46.80 10.00 1.60 3.01 8.84 0.0783 

51 22.60 11.36 1.60 2.24 49.38 0.2880 

50 20.10 10.95 1.60 2.13 61.18 0.3419 

48 16.01 13.85 1.60 1.92 124.42 0.6502 

47 10.75 7.30 1.45 1.44 121.85 0.6064 

ATTACK2 

76' 70 00 l'i 60 1 'iO '1? LI. Ll.1 0 071F. 

76 70.00 15.03 1.50 3.12 4.27 0.0690 

63 46.60 15.50 1.50 2.76 11.67 0.1158 

62 44.60 14.61 1.50 2.72 12.18 0.1159 

60 40.20 14.19 1.50 2.62 14.99 0.1305 

58 35.50 13.53 1.50 2.50 18.90 0.1498 

56 31.70 15.26 1.50 2.39 27.36 0.2012 

54 26.90 15.32 1.50 2.24 39.49 0.2638 

52 22.20 15.32 1.50 2.07 60.00 0.3654 

50 17.80 16.71 1.50 1.87 . 103.61 0.5820 

48 13.80 8.38 1.4' 1.59 80.61 0.4298 

Table 1 

RES UL TS AND DISCUSSION 

Figures 2 and 3 show the amplitude spectra of wave elevations, 
horizontal and vertical velocity components, obtained from 
measurements in a point of section 76 and 51. The velocities were 
oauoed at a distance of 32 and 16 cm from the bottom respectively. It 
~an °be seen that in the offshore section the wave spectra present only 
a harmonic of fundamental frequency, with a typical 2nd order Stokes 
behaviour. 

In figure 2, also the results of the 2nd order Stokes theory are 
shown. It has to be pointed out that the methods hereafter used to 
evaluate velocity components start from the knowledge of the real 
\liave profile assessed in the channel. On the contrary, Stokes theory 
gives joint theoretical results for wave elevations and velocity 
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Fig. 2 Amplitude spectra of elevations, horizontal and vertical 
velocity components assessed in section 76. 

components; this makes the comparison between Stokes results and 
those of all other methods here used difficult. For this reason in the 
following pages the results of 2nd and 3rd order Stokes calculations 
will not be presented, also because it has been verified that in all the 
examined situations they are worse than those obtained with the 
methods assuming the real elevations as an input. 

When the wave goes up to the breaking region, other harmonics 
appear, clearly showing that the shoaling produces a deformation of 
the waves and the consequent increase of non-linearities. 

Figure 3 shows that the vertical velocity component is more 
affected by non-linearities, indeed the rate between higher harmonic 
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Fig. 3 Amplitude spectra of elevations, hon·zontal and vertical 
velocity components assessed in section 51. 

4 

4 

and fundamental peak spectral density values is greater in vertical 
amplitude spectra than in the horizontal ones (Damiani and Mossa, 
1995a). 

The following analysis of velocity spectra has been limited to the 
first two peaks for homogeneity reasons, because the examined 
spectra in the deeper water sections have only two peaks as shown in 
figure 2. 

Figures 4 and 5 show the first two peaks of previous velocity 
component spectra, together with the values coming from transfer 
function methods. For clarity reasons the two frequency peaks have 
been reported with different scales. 
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Chakrabarti's approach (Chakrabarti, 1971) and its 2nd order 
approximation (Gudmestad and Connor, 1986), respectively CH I 
and CH II, have been applied using time history elevation as an 
input. In the same way, the methods reported by Koyama and Iwata 
(1986) have been applied using equations (1) in which elevations are 
known. The transfer function has a linear form (Linear function in 
Time Domain) or the modified form suggested by the Authors 
(Modified method in Time Domain) and it assumes anyhow only one 
value for a fixed measurement point. Although the results are 
presented in spectral form, the previous methods propose a linkage 
between time series of elevations and velocity components, that is the 
water surface profile is not decomposed into Fourier components. 
Thus the adopted procedure consists of calculating the time history of 
velocity components firstly and then of assessing the relative 
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Fig. 4 Experimental and theoretical amplitude spectra of 11 and w 
components assessed in section 76 at Z=32.1 cm. 

amplitude spectra by using FFT algorithm. In applying Koyama and 
Iwata methods, the value of t.t in equation (1) is the experimental 
time lag from a zero-upcrossing point to the nexi coming wave crest. 

Finally, a linear transfer function method was applied to directly 
evaluate the velocity amplitude spectra in frequency domain, starting 
from wave elevation ones (Linear method in Frequency Domain), as 
suggested by Woltering and Daemrich (1995). In this case the 
method was applied only to evaluate the fundamental peak and its 
harmonics by extending the computation to a narrow frequency band 
around each peak (0.9 f + I . I j). In this case the transfer function 



assumes a different value for each Fourier component of the wave 
elevations and the phase shift between wand 77 is td2. 
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Mean relative errors of hon'zontal velocity at all 
measurement points. 
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The figures confirm an acceptable approximation of almost all 
methods. The analysis was repeated for all measurement points to 
investigate the errors occurring when using different methods. For 
each frequency component the relative error can be evaluated as the 
difference between predicted and experimental values rated by 
eA.'Perimental ones; in this way, the sign of the error indicates if the 
method overpredicts or underpredicts the experimental values. The 
average of previous absolute errors can be assumed as a quality index 
for the different methods. This procedure is the same one adopted by 
Vis (1980); in this case only the first two frequency peaks were 
considered, whereas Vis calculated the mean error of all spectral 
frequency components for analysing random waves. 

Fig. 7 Mean relative errors of vertical velocity at all measurement 
points. 

Figures 6 and 7 report the errors on the first two frequency 
peaks obtained as the mean values of the absolute errors on all the 
spectra measured in the channel independently from the position of 
the measurement point (section and distance from the still water 
level). 

First of all, it can be observed that all methods give a better 
approximation when predicting the horizontal velocity component u. 

Moreover, for both velocity components, the fundamental peak 
evaluation is generally more accurate than the 1st harmonic one. It 
has to be mentioned that the contribution of the fundamental peak is 
usually more important when determining the velocity components; 
this means that the influence of the error on the fundamental peak, 
even if smaller than the one on the 1st harmonic, could be more 
important. This justifies the choice made in the present paper to 
neglect the errors on the 2nd and following harmonics, usually too 
small v.ith respect to the fundamental peak. On this subject it has to 
be underlined that Vis (1980), analysing random waves, neglected all 
spectral density values smaller than I 0% of peak one, considering 
them quite inaccurate. 

1n figure 8, in the same way \vith Vis (1980) , the previously 
discussed mean values between fundamental frequency peak and 1st 
harmonic errors are shown both for horizontal and vertical velocity 
components. It can be stated that the method which better 
approximates the experimental data is the linear transfer function 
applied in frequency domain concerning the horizontal velocity 
component, while for the vertical one Chakrabarti 2nd order is 
preferable; this confirms that not always the same method gives best 
results for all wave kinematics (Dean, 1970). 



Fig. 8 Mean errors of velocity components obtained by averaging 
the fundamental and }st harmonic peak errors. 

Infigures 9 and 10, the depth averaged errors for each method 
are shown against the sections where measurements have been made. 
Each bar represents the mean error in a section where many 
measurement points located at different distances from the bottom 
were investigated. The figure confirms that the u component can be 
assessed with a better approximation than the vertical one 
everywhere in the channel. 

A tendency of all methods to worsen the horizontal velocity 
evaluation when approaching the breaking region can be noted. This 
consideration is evident for CH I which is not suitable in evaluating 
non-linearities. Chakrabarti 's 2nd order approximation (CH Il) was 
successfully introduced to refine the CH I. 

About the LFD method it has to be noted that in spite of its 
simplicity and non rigorous assumption (it is not obvious that linear 
theory will adequately relate u and T] for clearly non-linear waves), 
the results obtained are pretty well approximated. 

SEx:ticns 

Fig. 9 Mean errors in horizontal velocity predicting against the 
measurement sections. 
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Sa:iicns 

Fig. 10 Mean errors in vertical velocity predicting against the 
measurement sections. 

CONCLUSIONS 

In the present paper the velocity components of regular waves 
have been analysed by comparing theoretical values with measured 
ones. The theoretical values of velocity components have been 
obtained applying five approximate methods which predict the wave 
orbital velocities from wave elevations. 

The five methods considered are Chakrabarti 's approach 
(Chakrabarti, 1971) and its 2nd order approximation (Gudmestad 
and Connor, 1986), the two transfer function methods in time 
doma_in reported by Koyama and Iwata (1986) and a linear transfer 
function method in frequency domain. 

The comparison between calculated and measured velocity 
amplitude spectra shows that all methods generally predict the 
motion field with an acceptable approximation. The CH I method is 
the only one that shows remarkable errors in the computing of 
horizontal component in those sections where the non-linearities are 
more visible. In this case the method has to be substituted with 
Chakrabarti ' s 2nd order approximation. It is also stated that all 
methods give a more reliable approximation of the fundamental peak 
than the first harmonic. 

Moreover the predicted horizontal components are more accurate 
than the vertical ones. This is due to the fact that the vertical 
components are more strongly affected by non-linearities. The 
previous results have been depth averaged, since many measurement 
points have been analysed in each section from the bottom to the 
wave profile level. It has to be mentioned that no evident dependence 
has been found between the errors and the quantity Zlh. 

The present investigation has also shown that a method giving 
the best approximation everywhere in the channel does not exist, and 
that it should be investigated the range of validity of each method. 
For practical proposals, LFD and CH II methods can be generally 
used better than the other ones. 



Moreover it has to be observed that it is not always possible to 
obtain the best representation for both the velocity components by 
using the same method. 

By averaging the obtained results, it can be said that for tested 
waves, the linear function method in frequency domain (LFD) can be 
generally used in predicting the horizontal velocity, with a mean 
error of about 4 % and a maximum one smaller than 10%. 

The most suitable method for predicting vertical velocity is 
Chakrabarti 2nd order approximation, with a mean error of about 6% 
and a maximum one smaller than 15%. 

The same conclusion can be reached by analysing separately the 
fundamental peak and the first harmonic. 
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